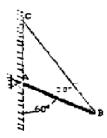
þ

F. E. Sem I (CBQs). Engineering Mechanics


QP Code: 5012

(REVISED COURSE) (3Hours)

Total Marks: 80

N.B.1. Question No. 1 is Compulsory.

- 2. Answer any Three more questions out of the remaining Five questions.
- 3. Assume any suitable data wherever required but justify the same.
- 4. Figures to the right indicate full mark
- 5. Take $g = 9.81 \text{m/s}^2$
- Q1a) Three concurrent forces P=150N, Q=250Nand S=300N are acting at 120° with each other Determine their resultant force magnitude and direction with respect to P. What is their equilibrant? [4]
- b) A prismatic bar AB of length 6m and weight 3 KN is hinged to a wall and supported by a cable BC. Find hinge reaction and tension in cable BC. [4]

c) A block of weight 800N is acted upon by a harizontal force P as shown in figure. If the coefficient of friction between the block and incline are $\mu_k = 0.35$ and $\mu_k = 0.25$, determine the value of P for impending motion up the plane. [4]

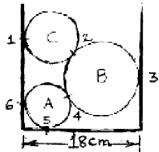
- d) A hot air balloon starts rising vertically up from the ground with an acceleration of 0.2m/s2. 12 seconds later the man sitting inside the balloon releases a stone. Find the time taken by the stone to hit the ground. [4]
- e) A small block tests on a turn table, 0.5m away from its centre. The turn table, starting from rest, is rotated in such a way that the block undergoes a constant tangential acceleration. Determine the angular velocity of the turn table at the instant when the block starts slipping. $\mu = 0.4$ [4]

٧×

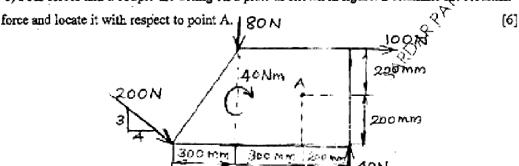
'MD-Con. 10286-15.

TURN OVER

2

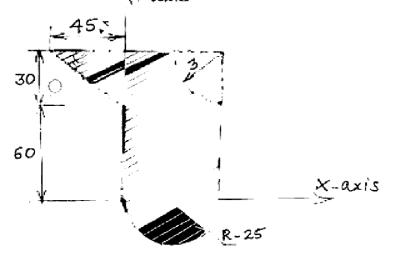

QP Code: 5012

Q2a) Three right circular cylinders A, B, C are piled up in a rectangular channel as shown in figure. Determine the reactions at point 6 between the cylinder A and vertical wall of the channel.


[8]

(CylinderA: radius=4cm, mass= 15kg

Cylinder B: radius=6cm, mass=40kg. Cylinder C: radius=5cm, mass=20kg.)


b) Four forces and a couple are acting on a plate as shown in figure. Determine the resultant

c) Two balls with masses 20kg and 30kg are moving towards each other with velocities 10m/s and 5m/s respectively. If after impact the ball having mass 30kg reverses its direction of motion and moves with velocity 6m/s, then determine the coefficient of restitution between the two balls.

[6]

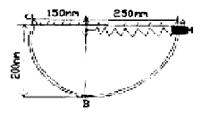
Q3.a) Determine the Centroid of the six All dimensions are in mm. [8]

MD-Con. 10286-15.

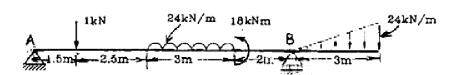
[TURN OVER

muADDA.com

muADDA.com


3

QP Code: 5012

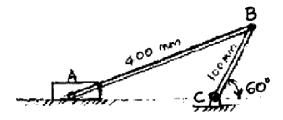

b) Force 5KN is acting along AB where A(0,0,-1)m and B(5,-2,-4)m. Another force 8KN is acting along BC where C(3,3,4)m. Find resultant of two forces and find moment of resultant force about a point D(0,3,-2)m.

c) A 2kg collar M is attached to a spring and slides without friction in a vertical plane along the curved rod ABC as shown in figure. The spring has an un-deformed length of 100mm and its stiffness k=800N/m. If the collar is released from rest at A, determine its velocity i) as it passes through B. ii) as it reaches C.

[6]

Q4.a) Find support reactions at A and B for the beam loaded as showfr in figure. A is hinged and B is roller.

b) An object is projected so that it just clears two obstacles each of 7.5 m height, which are situated 50 m from each other. If the time of passing between the obstacles is 2.5 s, calculate the complete range of projection and the initial velocity of the projectile.

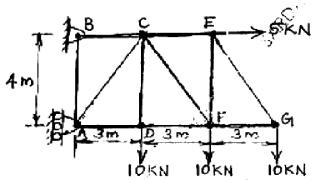


MD-Con. 10286-15.

[TURN OVER

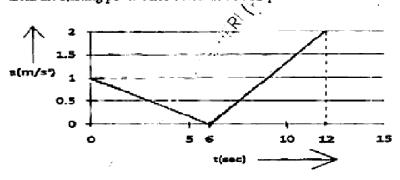
QP Code: 5012

c) The crank BC of a slider crank mechanism is rotating at constant speed of 30 rpm clockwise. Determine the velocity of the piston A at the given instant. [6]



Q5a) For the truss shown in figure, determine,

(i)Support Reactions [2]

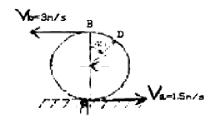

(ii)Forces in members CE and CF by method of sections only. [2]

(iii)Forces in any other four members by method of joints [4]

b) A particle moves in a straight line with acceleration-time diagram shown in figure. Construct velocity-time diagram for the motion assuming that the motion starts with initial velocity of 5m/s from the starting point. Also determine its its placement at t=12 seconds.

[6]

MD-Con. 10286-15.


[TURN OVER

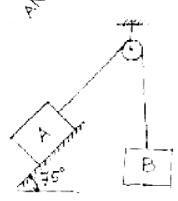
4

5

QP Code: 5012

c) Due to slipping, points A and B on the rim of the disk have the velocities V_{a*} 1.5m/s to the right and V_b 3m/s to the left as shown in figure. Determine the velocities of the centre point C and point D on the rim at this instant. Take radius of disk 0.24m. [6]

Q6a) Find force requires to pull block B as shown. Coefficient of friction between A and B is 0.3 and between B and floor is 0.25. Mass of A=40kg and B=60kg. [8]



b) A force acts at the origin in a direction defined by the angles $\theta_y = 65^{\circ}$ and $\theta_z = -40^{\circ}$ Knowing that the x-component of the force is -750N, determine i) the other components ii) magnitude of the force iii) the value of θ_x [4]

c) A particle travels on a circular path, whose distance travelled is defined by $S = (0.5t^3 + 3t)$ m. If the total acceleration is 10 m/s^2 , at t = 2 sec, find its radius of curvature. [4]

d) Block A and B of mass 6kg and 12kg respectively are connected by a string passing over a smooth pulley. Neglect mass of pulley. If coefficient of kinetic friction between the block A and the inclined surface is 0.2, determine the acceleration of block A and block B.

[4]

MD-Con. 10286-15.

5