S.E (chem) (REV CBGS.

COMPULEY Programming of QP Code: NP-18693
Numerical methods Hours (ab) (28) [Total Mark

[Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory, Answer any three questions from remaining.
 - (2) Assume data if necessary and specify the assumptions clearly.
 - (3) Answer to the sub-questions of an individual question should be grouped and written together i.e. one below the other.
 - 1. (a) Explain how to use 'do-while' loop in Sci-Lab with appropriate example. 5
 - (b) Using finite difference method obtain the discrete formula for the second order 5 derivative,

$$\frac{d^2x}{dt^2}$$

(c) Solve following equations using successive substitution method.

$$y + z = 5$$

 $4x + y - z = 3$
 $x - y + z = 2$

- (d) Calculate the value of y (0.2) for the equation $dy/dx = y^2 x$ if y (0) = 1.0, take 5 step size of 0-1 and use Euler's method.
- 2. A dynamic model for flow through cylindrical tank,

20

5

$$\frac{dh}{dt} = \frac{Fo - F}{\frac{\pi}{4}D^2}$$

where, D is diameter of tank, Fo is inlet flowrate, F is outlet flowrate and h is level in the tank. If tank dimensions are as given below, find the liquid level in the tank with respect to time. Take step size of 5 seconds and show calculations till 20 seconds. Use modified Euler's Method, or second order Runge - Kutta Method.

Data:

4

Diameter of tank = 1m

Height of tank = 2m

 $F = 0.04 \sqrt{h}$ in m³/s where h is in m,

$$F_0 = 0.06 \text{ m}^3/\text{s}$$

At t = 0 sec, h = 1 m.

3. (a) Solve following set of equations using Gauss-seidel and Gauss-Jordon method:x + 2y + 3z = 14

$$x + y - z = 0$$

$$2x + y - z =$$

35 it in difference form using Taylor's series (b) Write Laplace equation expansion.

Con. 11695-

5

$$K = \frac{C_A C_B}{C_c^3}$$

equation.

where, k = equilibrium constant = 2 muADDA.com

$$C_A = (1 - X_A)$$
 $C_B = C_{BO} (1 - X_B) \approx C_{AO} (1 - X_A)$
 $C_C = C_{CO} + 3C_{AO} X_A \approx 3 C_{AO} X_A$
 $C_{AO} = 1$

Find the conversion X_A using Newton – Raphson method. Take $X_A = 0.5$ as initial guess.

(b) Show that the following system does not have a solution :-

$$3x_1 + 2x_2 - x_3 - 4x_4 = 10$$

$$x_1 - x_2 + 3x_3 - x_4 = -4$$

$$2x_1 + x_2 - 3x_3 = 16$$

$$-x_2 + 8x_3 - 5x_4 = 3$$

5. (a) Solve the following system by Gaussian Elimination with and without partial privoting and comment on the result.

$$2.51x + 1.48y + 4.53z = 0.05$$

$$1.48x + 0.93y - 1.30z = 1.03$$

$$2.68x + 3.04y - 1.48z = -0.53$$

(b) Solve the following system by LU decomposition :-

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & -1 & 3 \\ 2 & 1 & -2 & 0 \\ 0 & 3 & 2 & -2 \\ 1 & 1 & 0 & 5 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 4 \\ -2 \end{bmatrix}$$

Ax = b

(b) Apply Regula-Falci method to find root in the interval [0.5, 1.5] for the function.
 10
 f = 30x⁵ - 180x⁴ + 330x³ - 180x² = 0
 accurate upto third decimal place.

െ. 11695-14.