Sem Ti (Chem) - (BGS 3/6/14)
PC
Process Calculation QP Code: NP-18732
(3 Hours) [Total Marks: 80]

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Assume relevant data if required.
 - (3) Attempt any three of remaining five questions.
- (a) Write short notes on Psychrometric chart.
 (b) The ground nut seed containing 45% oil and 45% solids are fed to expeller, the cake coming out of expeller is found to contain 80% solids and 5% oil. Find the % recovery of oil.
 (c) What do you mean by steady state material balance and unsteady state material balance?
 - (c) What do you mean by steady state material balance and unsteady state material balance.

 Explain with one example each.
 - (d) Describe the method of orsat analysis for various gases of combustion.
- 2. (a) The available nitrogen (N) in the urea sample in found to be 45% by weight. Calculate 5 the actual urea content in the sample.
 - (b) Nitrogen-hydrogen mixture with a molar ratio of 1:3 is used for the manufacture of 15 NH₃ where 18% conversion is achieved. After separating NH₃ from the product, unconverted gases are recycled. The feed contain 0.2 moles of argon per 100 moles of N₂ H₂ mixture. The tolerance limit of argon entering the reactor (i.e. in mixed feed) is 6 parts to 100 parts N₂-H₂ mixture by volume. Calculate the fraction of recycle that must be continually purged and overall yield of ammonia.
- 3. (a) The waste acid from a nitrating process contains 30% H₂SO₄, 35% NHO₃ and 35% 10 H₂O by wt. The acid is to be concentrated to contain 39% H₂SO₄ and 42% HNO₃ by addition of concentrated sulphuric acid containing 98% H₂SO₄ and concentrated nitric acid containing 72% HNO₃ (by wt.). Calculate the qualities of three acids to be mixed to get 1000 kg of desired mixed acid.
 - (b) Ethylene oxide is prepared by oxidation of ethylene 100kmol of ethylene and 100kmol 10 of O₂ are charged to a reactor. The percent conversion of ethylene is 85 and percent yield of C₂H₄O is 94·12. Calculate the composition of product stream leaving the reactor. The reaction taking place are:

$$C_2 H_4 + \frac{1}{2} O_2 \rightarrow C_2 H_4 O$$

 $C_2 H_4 - 30_2 \rightarrow 2 CO_2 + 2H_2 O$

Con. 12844-14.

muADDA.com

2

QP Code: NP-18732

4. (a) A stream flowing at a rate of 15000 mol/h containing 25 mole % N₂ and 75 mole % H₂ 10 is to be heated from 298 K(25°C) to 473K (200°C). Calculate the heat that must be transferred using C_p data given below:

$$C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C \times 10^6 d \times 10^9$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C \times 10^6 d \times 10^9$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C \times 10^6 d \times 10^9$
 $C_p = a + b T + CT^2 + dT^3 kJ/(kmol \cdot K)$
 $C \times 10^6 d \times 10^9$
 $C \times 10^$

(b) A natural gas contains 85% methane and 15% ethane by volume. Calculate the GHV 10 of this fuel in ki/kg from the standard heat of combustion of methane and ethane.

$$CH_4(g) + 20_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$
, $\Delta H_c^{\circ} = -802.62 \text{ kJ/mol}$
 $C_2H_6(g) + 3.5 O_2 \longrightarrow 2 CO_2(g) + 3H_2O(g)$, $\Delta H_c^{\circ} = -1428.64 \text{ kJ/mol}$
Latent heat of water vapour at 298 K = 2442.5 (kJ/kg).

5. (a) Prove for ideal gas: Pressure % = mole % = volume %.

8

(b) Write short notes on :-

12

- (i) Hess's law
- (ii) Limiting reactant and excess reactant
- (iii) Heat of dilution and heat of dissolution.
- 6. (a) Calculate the standard heat of formation of chloroform gas from its elements using 10 Hess's Law.

Data:

$$C(s) + O_{2}(g) \longrightarrow CO_{2}(g) \qquad \Delta H_{1} = -393.51 \text{ kJ/mol}$$

$$H_{2}(g) + \frac{1}{2} O_{2}(g) \longrightarrow H_{2}O \text{ (l)} \qquad \Delta H_{2} = -285.83 \text{ kJ/mol}$$

$$\frac{1}{2} H_{2}(g) + \frac{1}{2} Cl_{2}(g) \longrightarrow HCl \text{ (aq)} \quad \Delta H_{3} = -167.57 \text{ kJ/mol}$$

$$CHCl_{3}(g) + \frac{1}{2} O_{2}(g) + H_{2}O \text{ (l)} \longrightarrow CO_{2}(g) + 3 HCl(aq) \Delta H_{c}^{\circ} = -509.9 \text{ J kJ/mol}$$

(b) The orsat analysis of the flue gases from a boiler house chimney by volume is as 10 given below:

 CO_2 : 11.4% O_2 : 42% and N_2 : 84.4%

Assuming the complete combustion takes place:

- (i) Calculate the % excess of air
- (ii) Find the C: H ratio in the fuel.