SF (Chem) - Sem<u>iv</u> (CBGS). 23/5/1 AM<u>IV</u> Applied Mathematics OP Code: NP-19734

[Total Marks: 80

N.B.: 1) Question No. 1 is Compulsory.

- 2)Attempt any Three Questions from remaining Five questions.
- 3) Non programmable calculator is allowed.
- 1. a) Evaluate $\int \vec{F} \cdot d\vec{r}$ where $\vec{F} = \cos y$. i x. $\sin y$ j and c is the curve $y = \sqrt{1 x^2}$ in the xy planefrom (1,0) to (0,1) (05)
 - b) Find a Fourier series to represent $f(x) = x^2$ in (0.2π) . (05)
 - c) Find the total work done in moving a particle in the force field \vec{F} = 3xyi 5zj + 10xk along $x=t^2+1$, $y=2t^2$, $z=t^3$ from t=1 and t=2(05)
 - d) Find the Fourier series for $f(x) = 1 x^2$ in (-1, 1) (05)
- 2. a) Solve the following partial differential equation.

$$3 \times \frac{\partial z}{\partial x} - 5 \gamma \frac{\partial z}{\partial y} = 0$$
 by the method of separation of variables. (06)

- b) Evaluate by Green's theorem $\int \vec{F}$. $d\vec{r}$ where $\vec{F} = -xy(xi yj)$ and C is $r = a(1 + \cos\theta)$. (07)
- c) Find a cosine series of period 2π to represent $\sin x$ in $0 \le x \le \pi$. (07)
- 3. a) Solve Laplace Equation $\nabla^2 u = 0$ for the figure given below by Jacobi's method , calculate three iterations. (06)

- b) Verify Stoke's theorem for the vector field $\vec{F} = 4xzi y^2$] + yzk over the area in the plane z=0 bounded by x=0, y=0 and $x^2+y^2=1$. (07)
- c) Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$ and hence evaluate $\int_0^\infty \tan^{-1} \frac{x}{a}$. Sinx dx
- a) Show that the set of functions $Sin(\frac{\pi x}{2L})$, $Sin(\frac{3\pi x}{2L})$, $Sin(\frac{5\pi x}{2L})$ --- is orthogonal over (0,L) (06) b) Verify divergence theorem evaluate for $\overline{F}=2x\mathbf{i}+xy\mathbf{j}+z\mathbf{k}$ over the reason bounded by the cylinder $x^2 + y^2 = 4$, z=0, z=6 (07)

Cen. 11561-14.

muADDA.com

2

QP Code: NP-19734

- c) Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c\mathbf{1} \frac{\partial^2 u}{\partial x^2}$ under the boundary conditions u(0,t)=0, u(1,t)=0 and u(x,0)=x, (0<x<1), I being the length of the rod. (07)
- 5. a) Find the Fourier transform of $f(x) = \begin{cases} (1-x^2, |x| \le 1) \\ 0, |x| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right) \cdot \cos(x/2) dx$ (06)
 - b) Solve the following partial differential equation $\frac{\partial z}{\partial x} 2\frac{\partial z}{\partial y} = z$ given $z(x,0) = 3e^{-5x} + 2e^{-3x}$ by the method of separation of variables. (07)
 - c) Show that $\vec{F} = (\gamma e^{xy} \text{ Cosz})i + (xe^{xy} \text{ Cosz})j (e^{xy} \text{ Sinz})k$ is irrotational and find the scalar potential for \vec{F} and evaluate $\int \vec{F} \cdot dr$ along the curve joining the points (0,0,0) and (-1, 2, π). (07)
 - 6. a) Obtain the expansions of $f(x) = x(\pi x)$, $0 < x < \pi$ as a half range cosine series. Hence, show that $\sum_{n=1}^{\infty} \frac{1}{n^4} \frac{\pi^4}{90}$. (06)
 - b) Using Gauss's DI ergence theorem, evaluate $\iint_{S} \vec{F} \cdot d\vec{s}$ where $\vec{F} = 4xi 2y^2j + 3z^2k$ and S is the surface $x^2 + y^2 + z^2 = a^2$, z = 0, z = b. (07)
 - c) Solve Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for the figure given below (07)

Con. 11561-14.