1,

SE/Chem/kT/Rev 2
Applied M.P. Code: 12449 [Total Marks: 80 (3 Hours)

N.B.: (1) Attempt any three out of the remaining fire questions.

- (2)
- Now programmable calculator is allowed.
- 1. (a) Find the Fouries expansion of $f(x) = x^2$, $-\pi \le x \le \pi$ and hence, prove that $\frac{\pi^2}{6} = \sum_{i=1}^{\infty} \frac{1}{n^2}.$
 - (b) Evaluate $\int \overline{F} \times d\overline{r}$ where $\overline{F} = (2xy + z^2)i + x^2j + 3xz^2k$ along the curve x = t, y = t t^2 , $z = t^3$ from (0, 0, 0) to (1, 1, 1).
 - (c) Find the Fouries Transform of $f(x) = e^{-x^2/2}$. 5
 - (d) Find the circulation of \overline{F} round the curve C where $\overline{F} = yi + zj + xk$ and C is the ŝ circle $x^2 + y^2 = a^2 z = 0$
- 2. (a) Obtain half range Sine series for f(x) when: 5

$$\overline{F}(x) = \begin{cases} x & 0 < x < (\pi/2) \\ \pi - x & (\pi/2) < x < \pi \end{cases}$$

Hence, find the sum of $\sum_{n=1}^{\infty} \frac{1}{n^4}$

- (b) Show that the set of functions $\{\sin x, \sin 3x, \sin 5x\}$ n = 0, 1, 2 is orthogonal over $[0,\pi/2]$. Hence construct orthonormal set of functions.
- (c) Find the area of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ by using Green's Theorem.
- 3. (a) Find the Fourier cosine integral of the following function:

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - x & 1 \le x \le 2 \\ 0 & x > 2 \end{cases}$$

GN-Con.:8578-14.

TURN OVER

Q.P. Code: 12449

2

(b) Prove that
$$\int_{A}^{B} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2y^2) dy = \frac{\pi^2}{4}$$
 along arc $2x = \pi y^2$ from A(0, 0) to B(π /2, 1)

- (c) Find the Fourier expansion of $f(x) = 4 x^2$ in the interval (0, 2). Hence prov $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} = \frac{\pi^2}{6}$
- 4. (a) Obtain the complex form of Fourier series for $f(x) = e^{ax}$ in (-1, t)
 - (b) Using stoke's theorem formula $\int_C x^2 dx + xy dy$ and C is boundary of the rectangle 7 x = 0, y = 0, x = a y = b.
 - (c) A tightly stretched string with fixed end point x = 0 and x = l, in the shape defined by y = kx(l-x) where K is constant is released from this position of rest. Find y(x, t) the vertical displacement if $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.
- 5. (a) Using Gauss's Divergence theorem for $\overline{F} = (4xi 2y^2j + z^2k)$ taken over the region 6 bounded by $x^2 + y^2 = 4$, z = 0, z = 3.
 - (b) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^4} = 0$ for $0 < x < \tau, 0 < y < \pi$ with conditions given : $u(0, y) = u(\pi, y) = u(x, \pi) = 0$, $u(x, 0) = \sin^2 x$
 - (c) Show that $\overline{F} = (2xy + z^3)i + x^2j + 3z^2xk$ is a conservative field. Find its scalar potential and also work done in moving a particle from (1, -2, 1) to (3, 1, 4)

GN-Con.:8578-14