elex 3 sem circuit theory dec 2015

QP Code: 5208

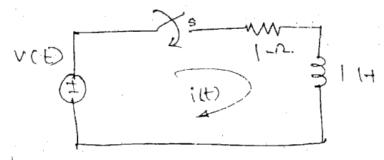
(3 Hours)

[Total Marks :80

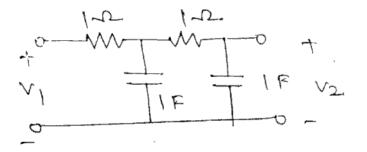
N.B.: (1) Question no. 1 is compulsory.

- (2) Attempt any three questions out of remaining questions... a2zSubjects.com
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if required.
- (5) Use smith chart for transmission line problem.
- 1. (a) The constants of a transmission lines are

5


5

R = 6/km, L = 2.2mH/km

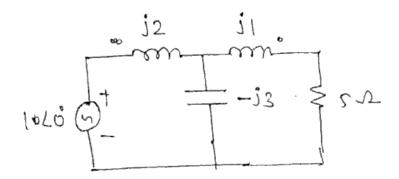

 $G = 0.25 \times 10^{-6} \text{ mho/km}$ $C = 0.005 \times 10^{-5} \text{ F/km}$

Determine the characteristic impedance propagation constant phase constant and attenuation constant at 1KHz

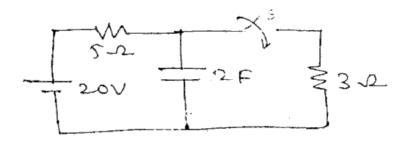
(b) Obtain the expression for i(t) if switch is closed at t = 0 If v(t) is r(t) = ramp signal

- (c) Check whether the polynomial is hurwitz or not by continued fraction method. 5 $F(S) = S^4 + S^3 + 4S^2 + 2S + 3$
- $F(S) = S^4 + S^3 + 4S^2 + 2S + 3$ (d) Find out $\frac{V^2}{V^1}$ for the following n/w given below.

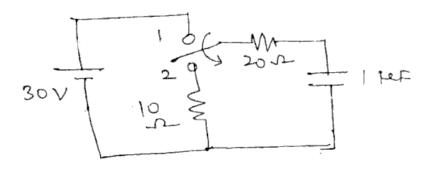
[TURN OVER


a2zSubjects.com

MD-Con. 10468-15.


a2zSubjects.com

2. (a) Find the voltage across 5Ω resistor in the network shown below. If K = 0.8 is coefficient of coupling



- 8
- (b) In the circuit shown, find out the expression for voltage V(t) across capacitor for t > 0 At t = 0 Switch is closed.

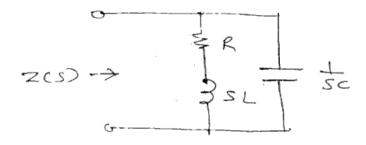
- (c) Define ABCD parameters for the two port network hence obtain condition for symmetry
- 3. (a) Find i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$ in the circuit given below. Switch is changed from position 1 to 2 at t = 0

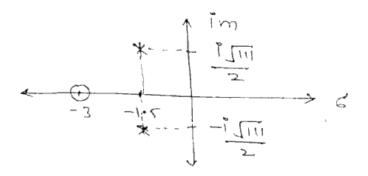
a2zSubjects.com

MD-Con. 10468-15.

[TURN OVER a2zSubjects.com

- Compare and Obtain Foster I and Foster-II of the following RC impedance g (b) function.


$$Z(S) = \frac{2(S+2)(S+4)}{(S+1)(S+3)}$$


6

Obtain cauer form I of LC network (c)

$$Z(s) = \frac{\left(s^2 + 4\right)\left(s^2 + 16\right)}{s(s^2 + 9)}$$

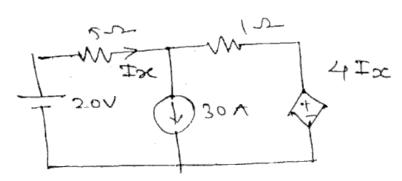
- (a) Derive the characteristic equation of a transmission line also obtain α β y 8 4. a2zSubjects.com of the transmission line
 - (b) Derive the relation for nominal impedance and cut off frequency for a constant k low pass filter.
 - 8 (c) A network and its pole zero diagram are shown in fig. Determine the values of R, L, C if Z(0) = 1

5. (a) Check whether the following functions are PRF or not 8

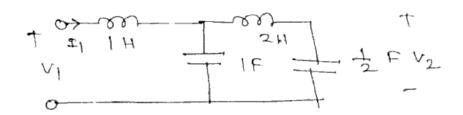
(i)
$$F(S) = \frac{S(S+3)(S+5)}{(S+1)(S+4)}$$

a2zSubjects.com

(ii)
$$F(S) = \frac{S^3 + 6S^2 + 7S + 3}{S^2 + 2S + 1}$$


TURN OVER

MD-Con. 10468-15.


6

6

(b) Find the current I_x using superpostion theorem.

- (c) The current $I(S) = \frac{2S}{(S+1)(S+2)}$ plot the pole zero pattern in s plane hence 6 obtain i(t) by finding out residues by graphical method.
- (a) The characteristic impedance of a high frequency line is 100 Ω. If it is terminated 8 by a load impedance of 100 + j100 Ω. Using smith chart find out (i) VSWR.
 (ii) Reflection coefficient (iii) Impedance at 1/10 of wavelength away from load (iv) VSWR minimum and VSWR maximum away from the load.
 - (b) For the network shown and find out $\frac{V_1}{I_1}$ and $\frac{V_2}{I_1}$

(c) Find out Theverin's equivalent network

a2zSubjects.com

MD-Con. 10468-15.