6

SEI Sen-III | App. Maths. III | EXTC & INST | May 14

QP Code: NP-18646

(3 Hours)

[Total Marks : 80

- N. B.: (1) Question No. 1 (one) is compulsory.
 - (2) Attempt any 3 (three) questions from the remaining questions.
 - (3) Assume suitable data, if necessary.
- (a) Evaluate $\int \frac{(\cos 6t \cos 4t)}{t} dt$ 5
 - (b) Obtain complex form of fourier series for $f(x) = e^{ax}$ in (-1,1)
 - (c) Find the work done in moving a particle in a force field given by $\overline{F}=3xy\hat{i}-5z\hat{j}+10x\hat{k}$ along the curve $x=t^2+1$, $y=2t^2$, $z=t^3$ from t = 1 to t = 2. muADDA.com
 - (d) Find the orthogonal trajectory of the curves $3x^2y + 2x^2 y^3 2y^2 = \alpha$, where 5 a is a constant.
- (a) Evaluate $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = \sin t$, y(0) = 0, y'(0) = 0, by Laplace transform 6
 - (b) Show that $J_{\frac{5}{2}} = \sqrt{\frac{2}{\pi x}} \left| \frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right|$ 6
 - (c) (i) Find the constants a, b, c so that 4 $\overline{F} = (x+2y+az)\hat{i}+(bx-3y-z)\hat{j}+(4x+(y+2z)\hat{k}$ is irrotational.
 - (ii) Prove that the angle between two surfaces $x^2 + y^2 + z^2 = 9$ and 4 $x^2 + y^2 - z = 3$ at the point (2,-1,2) is $\cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$
- (a) Obtain the fourier series of f(x) given by

 $f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ x^2 & 0 \le x \le \pi \end{cases}$

- (b) Find the analytic function f(z) = u + iv where $u = r^2 \cos 2\theta r \cos \theta + 2$
- (c) Find Laplace transform of muADDA.com 8 (i) te-3t cos2t.cos3t
 - (ii) $\frac{d}{dt} \left[\frac{\sin 3t}{t} \right]$

Con. 11456-14.

TURN OVER

QP Code : NP-18646

- (a) Evaluate $\int J_3(x)dx$ and Express the result in terms of J_0 and J_1 6
 - ઇ (b) Find half range sine series for $f(x) = \pi x - x^2 \text{ in } (0, \pi)$

2

Hence deduce that $\frac{\pi^3}{32} = \frac{1}{12} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$

8 (c) Find inverse Laplace transform of

(i)
$$\frac{1}{s} \tanh^{-1}(s)$$
 (ii) $\frac{se^{-2s}}{(s^2 + 2s + 2)}$

- (a) Under the transformation $w + 2i = z + \frac{1}{z}$, show that the map of the circle |z| =2 is an ellipse in w-plane.
 - (b) Find half range cosine series of $f(x) = \sin x$ in $0 \le x \le \pi$. 6 Hence deduce that

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$$
(c) Verify Green's theorem, for

 $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where \oint is boundary of the region defined by x=0, y=0, and x+y=1.

(a) Using convolution theorem; evaluate 6

$$L^{-1}\left\{\frac{1}{(s-1)(s^2+4)}\right\}$$

- (b) Find the bilinear transformation which maps the points 6 z = 1, i, -1 onto w = 0, 1, ∞ 8
- (c) By using the appropriate theorem, Evaluate the following:-

(i)
$$\int \overline{F} \cdot d\overline{F}$$
 where $\overline{F} = (2x - y)\hat{i} - (yz^2)\hat{j} - (y^2z)\hat{k}$
and c is the boundary of the upper half of the sphere $x^2 + y^2 + z^2 = 4$
(ii) $\int \int (9x\hat{i} + 6y\hat{j} - 10z\hat{k}) \cdot d\overline{s}$ where s is

the surface of sphere with radius 2 units.

Con. 11456-14.

muADDA.com

muADDA.com