www.a2zsubjects.com

www.a2zsubjects.com

O. P. Code: 600902

[3 Hours]

[Total Marks:80

- Notes: 1) Question no.1 is compulsory.
 - 2) Attempt any **THREE** from questionno.2 to 6.
 - 3) Use illustrative diagrams wherever possible.
 - 4) Use of Steam table is permitted.
 - Assume suitable data wherever required.

Solve any Four :-Ì.

20

- Draw a neat boiling curve for water and mark the different boiling regimes.
- A steel ball 50mm in diameter and at 900°C is placed in still atmosphere of 30°C.Calculate the initial rate of cooling of the ball in °C/min. Take $\rho = 7800 \text{ kg/m}^3$, $C = 2 \text{ kJ/kg}^0 \text{C(for steel)}$, h=30W/m^{2 0}C. Neglect internal thermal resistance.
- Explain non dimensional numbers used in convection heat transfer.
- Explain briefly the term thermal capacity and thermal diffusivity of material.
- Define intensity of radiation. What is a solid angle? What is its unit?
- A wall of a furnace is made up of inside layer of silica brick120 mm thick covered 10 with a layer of magnesite brick 240 mm thick. The temperature at inside surface of silica brick wall and outside surface of magnesite brick wall are 725°C and 110°C respectively. The contact thermal resistance between the two walls at the interface is 0.0035°C/W per unit wall area. If thermal conductivities of silica and magnesite bricks are 1.7W/m°C and 5.8 W/m°C, calculate.
 - (i) The rate of heat loss per unit area of walls.
 - (ii) The temperature frop at interface.
 - Derive the formula for rate of heat transfer for an insulated tip fin from the 10 differential equation

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

- a) Air at 30°C flows with a velocity of 2.8 m/s over a plate 1000 mm (length) X 600 10 mm (width) X 25mm (thickness). The top surface of the plate is maintained at 90°C. If the thermal conductivity of the plate material is 25 W/m°C, calculate: i) heat lost by the plate; ii) bottom temperature of the plate for the steady state condition. The thermo - physical properties of air at mean file temperature at 60° C are $\mu = 1.06 \text{ kg/m}^3$, $k = 0.02894 \text{ W/m}^{\circ}$ C, $C_p = 1.005 \text{ kJ/kg}^{\circ}$ C, Pr = 0.696; $v = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$. Choose the appropriate relation from the following: $\overline{\text{Nu}} = 0.664 \, (\text{Re}_{\text{L}})^{1/2} \, (\text{Pr})^{1/3} - \text{For Laminar flow};$ $\overline{Nu} = 0.036 \, (Re_L)^{0.8} \, (Pr)^{1/3} - For Turbulent flow$
 - b) With the help of dimensional analysis method prove that for free convection 10 Nu=constant x (Gr.)^m x(Pr.)ⁿ

[TURN OVER

125

www.a2zsubjects.com

Q. P. Code: 600902

2

4.	a)	State and explain the reciprocity theorem. Derive the equation $A_1 F_{1-2} = A_2 F_{2-1}$.	10
	b)		10
		diameter, E=0.6 having negligible thickness. This tube in turn is placed	
		concentrically within a tube of 5 mm diameter, E=0.7. Annular spaces can be	
		assumed to be evacuated completely. If the surface temperature of the outer tube	
		is maintained at 5°C, what must be the temperature of wire so as to maintained the	
		temperature of inner tube at 120°C?	

- Derive the expression for log mean temperature difference in a counter flow heat 08 exchanger. State your assumption.
 - b) In a certain double pipe heat exchanger hot water flows at the rate of 50000 kg/hr of and gets cooled from 95°C to 65°C. At the same time 50000 kg/hr of cooling water at 30°C enters the heat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at 2270W/m²K. Determine the heat transfer area required and the effectiveness, assuming two streams are in parallel flow. Assuming for the both streams C_p = 4.2 kJ/kg K.
 - c) Explain Heat Exchangers effectiveness. 04
- 6. a) Write short note on any Two of the following -

08

- i) Heisler Chart.
 - ii) Explain efficiency and effectiveness of fin.
 - iii) Time constant of thermocouple.
 - b) Explain Hydrodynamic and thermal boundary layer.

- 04
- c) A steel rod (K= 32 W/m°C), 12 mm in diameter and 60 mm long, with an insulated ends to be used as spine. It is exposed to surroundings with a temperature of 60°C and a heat transfer coefficient of 55 W/m²°C. The temperature at the base of the fin is 95°C. Determine-
 - (i) The fin efficiency
 - (ii) The temperature at the edge of the spine:
 - (iii) The heat dissipation.

175-2