Q.P. Code :05600

Please check whether you have got the right question paper.
N.B: 1. All questions are compulsory.
2. Figures to the right indicate marks.

Q. 1 Answer following questions.

1) Let f be defined on an interval, and let x_{1} and x_{2} be points on the interval, then f is said to be decreasing if
p) $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$
q) $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}>x_{2}$
r) $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$
s) None of these
2) If a function f is concave up on (a, b) then which of the following is true on (a, b)
p) $f^{\prime}>0$
q) $f^{\prime}<0$
r) $f^{\prime}=0$
s) None of these
3) If f is integrable on [a,b] and $f(x) \geq 0 \forall x \in[a, b]$, then
p) $\int_{\mathrm{a}}^{b} f(x)>0$
q) $\int_{\mathrm{a}}^{b} f(x) \geq 0$
r) $\int_{\mathrm{a}}^{b} f(x)=0$
s) None of these
4) A rule that assigns a unique real number $f(x, y)$ to each point (x, y) in some set D in the $x y$-plane is called
p) a function of one variable
q) a function of two variable
r) a function of three variables
s) None of these
5) which of the following is true about the function $f(x, y)=3 x^{2} y^{5}$?
p) Discontinuous at $(0,0)$
q) Discontinuous at $(1,1)$
r) Continuous everywhere
s) None of these
b) Fill in the blanks for the following questions:
6) A function f has a relative maximum at x_{0} if there is an open interval containing x_{0} on which $f(x)$ is ---$f\left(x_{0}\right)$ for every x in the interval.
7) The points on the curve $y=f(x)$ where the rate of change of y with respect to x changes from increasing to decreasing , or vice versa is known as-------
8) The integral $\int_{0}^{\pi} \sqrt{\left(1+\cos ^{3} x d y\right.} x$ is the arc length of $\mathrm{y}=----------$ from $\mathrm{x}=0$ to $\mathrm{x}=\pi$.
9) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x-y}{x+y+1}$, the value of $\mathrm{f}(\mathrm{y}+1, \mathrm{y})$ is given by ---------
10) The value of $\lim _{(x, y) \rightarrow(0,1)} x y^{2}=$ \qquad

Q.P. Code :05600

c) State true or false for the following questions:

1) If $f(x)=0$ has a root, then Newtons Method starting at $x=x_{1}$ will approximate the root nearest x_{1}.
2) The order of the differential equation $\left(\frac{d y}{d x}\right)^{2}=\frac{d y}{d x}$ is one.
3) If $f(x, y) \rightarrow L$ as (x, y) approaches (0,0) along the x-axis , and if $f(x, y) \rightarrow L$ as (x, y) approaches $(0,0)$ along the y-axis then $\lim _{(x, y) \rightarrow}(0,0) f(x, y)=L$.
4) If a function f is continuous at every point in an open set D, then f is continuous on D.
5) A function f of two variables is said to have a relative maximum at a point (x_{0}, y_{0}) if there is a disk centered at $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for all points (x, y) that lie inside the disk.
Q. 2 Answer any THREE of the following questions:
a) Find the intervals on which $f(x)=x^{2}-3 x+8$ is increasing and the intervals on which it is decreasing.
b) Use first and second derivative tests to show that $f(x)=3 x^{2}-6 x+1$ has a relative minimum at $x=1$.
c) Sketch the graph of the equation $y=x^{3}-3 x+2$ and identify the locations of the intercepts (draw the graph on the answer sheet itself).
d) Find the absolute maximum and minimum values of $f(x)=(x-2)^{2}$ in [1,4].
e) A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running feet of chicken wire is available for the fence?
f) The equation $x^{3}-2 x-2=0$ has one real solution. Approximate it by Newtons Method.
Q. 3 Answer any THREE of the following questions:
a) Find the area under the curve $y=x^{3}$ over the interval $[2,3]$.
b) Find the area of the region bounded above by $y=x+6$, bounded below by $y=x^{2}$ and bounded on the sides by the lines $x=0$ and $x=2$.
c) Find the approximate value of $\int_{1}^{2} \frac{1}{2} d x$ using Simpson's rule with $\mathrm{n}=10$.
d) Solve differential equation $\frac{d y}{d x}=\frac{y}{x}$.
e) Use Euler's Method with a step size of 0.25 to find approximate solution of the initial-value problem $\frac{d y}{d x}=x-y^{2}, y(x)=1$ over $0 \leq x \leq 1$.
f) Solve the differential equation $\frac{d y}{d x}+3 y=e^{-2 x}$ by the method of integrating factors.
Q. 4 Answer any THEREE of the following questions:
a) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x y}{x^{2}+y^{2}}$, find the limit of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ as $\left.(\mathrm{x}, \mathrm{y}) \rightarrow(0,0) 1\right)$ along x -axis and 2) along the line $\mathrm{y}=\mathrm{x}$.
b) Evaluate $\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \cdot \log \left(x^{2}+y^{2}\right)$, by converting to polar coordinates.
c) Find $f_{x}(x, y)$ and $f_{x}(x, y)$ for $f(x, y)=2 x^{3} y^{2}+2 y+4 x$, and use those partial derivatives to compute $f_{x}(1,3)$ and $f_{y}(1,3)$.
d) Find the directional derivative of $f(x, y)=e^{x y}$ at $(2,0)$ in the direction of unit vector that makes an angle of $\frac{\pi}{3}$ with the positive x-axis.
e) Find an equation of the tangent plane to the surface $x^{2}+4 y^{2}+z^{2}=18$ at the point $(1 ., 2,1)$. Also find the parametric equation of the line that is normal to the surface at the point $(1,2,1)$.
f) Find all relative extrema and saddle points of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$.

Q.P. Code :05600

Q. 5 Answer any THREE of the following questions:
a) Find the absolute maximum and minimum values of $\mathrm{f}(\mathrm{x})=\frac{x-2}{x+2}$ on $[-1,5]$.
b) Show that for any constants A and B , the function $\mathrm{y}=A e^{2 x}+B e^{-4 x}$ satisfies the equation $\mathrm{y}^{\prime \prime}+2 \mathrm{y}-8 \mathrm{y}=0$.
c) Find the area of the region under the curve $\mathrm{y}=\mathrm{x}^{2}+1$ and over the interval $[0,3]$.
d) Solve differential equation $\frac{d y}{d x}+2 x y=x$.
e) Determine whether the following limit exists. If so, find its value. $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{4}-16 y^{4}}{x^{2}+4 y^{2}}$.

