15/15

CEVISED COURSE

(3 Hours)

CHEM/CBGS/IT/CINM

QP Code:4908

Total Marks: 80

N.B.:

- 1) Question 1 is compulsory. Answer any three questions from remaining.
- 2) Assume data if necessary and specify the assumptions clearly
- Draw neat sketches wherever required.
- 4) Answer to the sub-questions of an individual question should be grouped and written together i.e. one below the other.
- 1. (a) Consider the following system of equations:

[10]

$$\begin{bmatrix} 1 & 1 \\ 1 & (1+\epsilon) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Solve the system for $\epsilon = 0.01$; 0.001; and 0.0001 by elimination. How sensitive is the solution to changes in ϵ ?

(b) Use Crank-Nicholson Scheme to solve,

[05]

$$u_{xx} = u_t$$
 $0 \le x \le 1$ $t > 0$ $h = \frac{x}{4}$ $k = \frac{1}{4}$

Given u(x,0) = 0, u(0,t) = 0, u(1,t) = 50t Compute u for one step in t-direction.

(c) Explain how to use 'for' loop in SciLab with appropriate example.

[05]

2. (a) Consider the following equation:

[12]

$$f(x) = x^3 - 5x^2 + 6x - 1 = 0$$

Rewriting this as:

$$x = x + f(x) = g(x)$$

Start from $x^{(0)} = 0$ and compute upto $x^{(3)}$, by Successive Substitution. What happens if we start with $x^{(0)} = 1$. Is convergence guaranteed, for $0 \le x \le 3$?

(b) Solve the following system by LU decomposition:

[08]

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -8 \\ -20 \\ -2 \end{bmatrix}$$

(a) Obtain a root of the following equation using Newtons Method in the interval [12]
0 ≤ z ≤ 2:

$$f(x) = \ln(x^2 + 1) - e^{0.4x} \cos(\pi x)$$

- (1) Solve the following equation to find a root in the interval [0.1, 2] by the method [08] false position. Obtain a value correct to three decimal places.
- 4. (a) Find z(2) from following ODE using fourth order Runge-Kutta method: [14]

$$\frac{dx}{dt} = e^{-t} (\cos t - \sin t) - \sin(\frac{t}{2}) \quad \text{with} \quad x(0)$$

57-Con.: 10533-15.

 $^{\prime\prime} LR$

26/5/15

CHEM/CBGS/I

2

QP Code :4908

- (b) Write Laplace equation and express it in difference form using Taylor's series expansion
- 5. Solve the following equations using Newtons Method and starting from

[20]

$$x^{(0)} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

$$f_1(x) = x_1^2 x_2 + x_2^2 x_1 - 2x_1 x_2 + 5x_1 - 7 = 0$$

$$f_2(x) = x_1^3 - 2x_1^2 x_2^2 + x_1 x_2^2 - 6x_2 + 15 = 0$$

Perform minimum three iterations.

(a) Consider t¹ e following example:

[12]

$$\frac{dy}{dt} = -y^2 \quad \text{with} \quad y = 1 \quad \text{at} \quad t = 0$$

where t and y are scaled variables. This equation represents a second order reaction taking place in a tubular reactor. Integrate the equation using Eulers Implicit Method from t=0 to t=5.

(b) Solve the following system by Jacobi Iteration:

[C8]

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Carry out five iterations.

JF-Cop.: 19633-15.