QP Code : 31271

www.a2zsubjects.com

(4 Hours) [Total Marks: 80

- (4 11001

- N. B.: (1) Question No.1 is compulsory.
 - (2) Attempt any three questions from question Nos. 2 to 6.
 - (3) Assume any suitable data wherever required.
 - (4) Draw figures wherever needed.
 - (5) Figures to the right indicate full marks.

Write short notes on any four.

- (a) Expansion provision in heat exchanger
- (b) Entrainment separators
- (c) Material of construction of high pressure vessels
- (d) Buried pipeline
- (e) Design considerations for crystallizers

Design a U-tube heat exchanger for the following data:

Shell side:

Design pressure= 0.8 N/mm²

Permissible stress for shell material= 100 N/ mm2

Standard torispherical head with knuckle radius as 6% of crown radius

25% cut segmental baffles are provided

Gasket on shell side- Flat metal jacketed asbestos filled

Gasket factor= 3.75

Gasket seating stress= 53 N/mm²

Tube side:

Number of tubes= 40

Tube outside diameter= 20 mm

Design pressure of tube side fluid = 2.0 N/mm²

Permissible stress of tube material = 120 N/mm²

Tube pitch =square

·Channel and channel cover:

Material of construction- same as shell

Joint with tube sheet- Ring facing with 18mm width

Gasket factor = 5.5

Gasket seating stress= 126 N/mm²

Allowable stress for bolt material = 140 N/mm²

I TURN OVER

FW-Con. 9950-16.

QP Code: 31271

www.a2zsubjects.com

www.a2zsubjects.com

2

	•				
	(a) Design (i) Shell (diameter and thickness)	3			
	(ii) Head	2			
	(iii) Flange joint between shell and tubesheet	3			
_	(iv) Flange joint between channel and tubesheet	3			
i Oi	(v) Tube sheet thickness	. 2			
is.c	(vi) Channel and channel cover thickness for a flat cover	2			
ecı	(b) Draw to a recommended scale the assembly drawing of the above				
ubj	designed U-Tube heat exchanger.	.5			
www.a2zsubjects.com					
7	(a) Write the design procedure of shell wall of a tall column. Design must	12			
3	include all the stresses working on a tall vessel.				
\$	(b) Describe, various types of constructions for high pressure vessels with	8			
	neat sketches.				
_		:			
www.a2zsubjects.com	Design a calendria type evaporator with the following data assuming that				
S.C	it has wire mesh for entrainment separation.				
ect	Evaporator drum under vacuum = external pressure 0.1 N/mm ²				
ıbj	Amount of water to be evaporated = 3000 kg/hr				
ZSI	Heating surface required $= 350 \text{ m}^2$				
a2	Steam pressure = 0.2 N/mm^2				
×	Density of liquid = 995 kg/m ³				
Š	Density of vapor $= 0.83 \text{ kg/m}^3$				
	Effective Tube length = 1750 mm				
	Tube outside diameter = 40 mm				
	Tube thickness = 1.5 mm				
E O	Tubes laid on triangular pitch				
S.C	Top head is torispherical				
ect	Modulus of elasticity for shell material = 20 × 10 ⁴ N/mm ²	. [
į	Modulus of elasticity for tube material= 9.5 x 10 ⁴ N/mm ²				
www.a2zsubjects.co		٠.			
a2;	Assume downtake pipe as 50% of the total tube cross sectional area				
×	Permissible stress for evaporator material= 98 N/mm ²				
*	(a) Design the				
	(i) Calendria (Diameter and thickness)	4			
	(ii) Tubesheet thickness	4			
	(iii) Vapor drum (Diameter and thickness)	4			
	(iv) Top torispherical head	2			
	[TURN (OVER			

FW-Con. 9950-16.

QP Code: 31271

3

	(b)	Draw to a recommended scale the sectional front view of the above designed calendria.	. 6
ww.a2zsubjects.com www.a2zsubjects.com www.a2zsubjects.com	(a)	Show the symbols for the following components (i) Needle valve (ii) Filter press (iii) Centrifuge (iv) Autoclave (v) Ball mill	6 www.a2zsub
	(b)	(vi) Centrifugal pump Write notes on (i) Process flow diagram	بست
	(c)	(ii) Piping and Instrumentation Diagram Estimate the optimum pipe diameter for a water flow rate of 12 kg/s at 20°C. Carbon steel pipe is used. Density of water is 995 kg/m³ and viscosity of water at 20°C is 1.1 x 10 ⁻³ Ns/m². Also find whether flow is laminar or turbulent.	ects.com
		A high pressure compound cylinder consists of an inner tube of inside diameter as 200 mm and outside diameter as 250 mm. A tube of 300 mm external diameter is shrunk fit on it. The contact pressure at the 2 tube surfaces after shrink fit is 7.85 N/mm^2 . The combination of the cylinder assembly is then subjected to an internal pressure of 83 N/mm ² . Design the original dimensions required for the tubes and determine the stress distribution. If the co-efficient of thermal expansion is 12×10^{-6} /°C determine what temperature the outer cylinder should be heated to achieve the necessary shrink fit. Assume $E = 2 \times 10^5 \text{ N/mm}^2$. a2zSubjects.com	www.a2zsubjec
	(b)	Plot the stress distribution along the wall of the above designed high pressure vessel.	ects.com

FW-Con. 9950-16.

www.a2zsubjects.com

www.a2zsubjects.com