N.B.:

www.a2zsubjects.com

www.a2zsubjects.com

- 1) Question 1 is compulsory. Answer any three questions from remaining.
- Assume data if necessary and specify the assumptions clearly.
- 3) Draw neat sketches wherever required.
- 4) Answer to the sub-questions of an individual question should be grouped and written together i.e. one below the other.

Answer the following sub-questions briefly. Each sub-question carries equal marks.

- What is "Energy Use Profile"? 1.
- "Interlocking the equipments with related process helps in saving the energy"; justify 2. this sentence.
- What is the difference between primary energy source and secondary energy source? 3. Give few examples of each.
- 4. Define the concept of "pinch temperature" in heat exchanger networking.
- 5. Define 'cogeneration'.
- 6. Why 'steam economy' is more in case of multiple effect evaporator compared to single effect evaporator?
- 7. "Waste heat recovery reduces environmental pollution"; justify this sentence.
- 8. Write and explain the formula to calculate minimum number of heat exchangers in any heat exchanger network.
- 9. What is the use of an instrument, "foot candle meter" while carrying energy audit of any facility?
- What is the meaning of 'heat integration' in any process system?

The process system involves three process streams whose data is as given below.

www.a2zsubjects.com

Stream	1	2	3
T _{in} (°C)	280	300	140
Toni (°C)	130	200	255
C (kW/°C)	2	1	5

For $\Delta T_{min} = 30$ °C, the temperature interval (TI) diagram for above process system was prepared where 5 temperature intervals were found. The upper and lower temperature limit for these temperature intervals and heat content in respective intervals are tabulated below:

TURN OVER

www.a2zsubjects.com

Upper 'T' limit - Lower 'T' limit (°C) (w.r.t. hot stream scale) for TI	Heat content in corresponding TI (kW)
300 285	15
285 – 280	- 20
280 – 200	- 160
200 – 170	- 90
170 – 130	-80

Q.P. Code: 727700

(08)

(20)

www.a2zsubjects.com

For this system.

- (i) Determine the minimum hot and cold utility required as well as pinch temperature
- (ii) Using suitable technique of heat exchanger networking, design a feasible HEN for this system to satisfy minimum utility load.
- (a) Explain how to make "motor, belts and drives system" of process plant more efficient.
- (b) Discuss different types of 'energy sub audits'.
- (a) Write in detail (i.e. working, advantages, disadvantages, applications) about Gas turbine cogeneration system.
- (b) Discuss direct and indirect benefits of waste heat recovery.

Write short note on

- (a) Heat pumping in Distillation
- (b) Global status of primary energy sources
- (c) Waste heat boiler
- (d) Cogeneration with bottoming cycle

A forward feed triple effect evaporator is used to concentrate dilute solution. The steam (at 121° C and 4093 kg/hr) is used as heating source in 1^{st} effect, however in 2^{nd} and 3^{rd} effect vapors generated in previous effect are used as heating source. The latent heat (λ) of steam used in 1^{st} effect is 2200 kJ/kg. Other useful data is as given below:

Data:

	Effect 1	Effect 2	Effect 3
U (W/m²K)	3100	2000	1100
ΔT (°C) (adjusted for cold feed condition)	18	17	34
Vapor generated from (kg/hr)	2480	2660	2858
λ (kJ/kg)	2249	2293	2377

Calculate:

- (i) Boiling point Temperatures in each effect (ii) Het transfer area in each effect
- (iii) Steam economy