4/12/2015 BE SEON VIT ELEX (CBGS) - PEIL

a2zSubjects.com

QP Code: 5939

a2zSubjects.com

(3 Hours)

a2zSubjects.com

Total Marks:80

- N.B.: (1) Question no. 1 is compulsory.
 - (2) Solve any three questions out of remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Solve one complete question together.

a2zSubjects.com

- (5) Assume suitable data wherever necessary.
- 1. Attempt any four from the following:-
 - (a) What are the advantages of SVM over the conventional Sine wave PWM? Explain. 5
 - (b) List the merits and demerits of online and offline UPS.
 - (c) Explain regenerative braking for DC motors.

5

5

- (d) Explain in brief the effect of sourceinductance in single phase fully controlled 5 bridge rectifier.
- (e) Explain the concept of UPS and give classification of UPS system.
- 2. (a) Explain clearly the steps involved in Space Vector Modulation for three phase 10 voltage source inverter.
 - (b) A single phase full-wave mid-point converter with freewheeling diode as shown 10 below in Fig. Q2(b) is supplied from a 120V, 50 Hz supply with a source inductance of 0.33 mHenry. Assuming that the load current is continuous at 4A, find the overlap angle for
 - (i) Transfer of current from a conducting thyristor to the commutating diode.
 - (ii) From the commutating diode to a thyristor when the firing angle is 15 degree.

- 3. (a) Derive and explain the state-space model of Buck converter.
- 10
- (b) Explain the PI (Proportional + Integral) control of DC-DC converter with the 10 help of neat diagram.

a2zSubjects.com

- 4. (a) Derive the expressions for output voltage and current for a single phase fully 8 controlled bridge rectifier with source inductance using equivalent circuit.
 - (b) What are SMPS? Give classification and explain any SMPS circuit in detail. 6
 - (c) Draw and explain the battery charging circuit involving power electronics system. 6

a2zSubjects.com

[TURN OVER

QP Code: **5939**

a2zSubjects.com

5.	(a)	A separately excited DC motor is supplied from 230V, 50Hz source through a	10
		single-phase half wave controlled converter. Its field is fed through single-phase	10
		semi-converter with zero degree firing angle delay.	
		Motor resistance = 0.70Ω , Motor constant = 0.5volts sec/rad.	
		For a rated load torque of 15 NM at 1000 rpm and for continuous ripple-free	
		current, determine:	
		(i) Firing angle delay of the armature converter.	
		(ii) RMS value of thyristor & freewheeling diode current.	
		(iii) Input power factor of the armature current.	
	(h)	Explain various methods of speed control for 3-phase induction motor.	
	, 5. 7	explain various methods of speed control for 3-phase induction motor.	10
5 1	Vrita	short notes on:	
	(a)	Comparison of fly-back and forward converters used in SMPS.	7
	(b)	Power electronics applications in induction heating.	2
		Slip power recovery scheme for induction motor using	10 7 6 7
	(0)		7
		Kramer Drive below sub-synchronous speed.	

a2zSubjects.com