T. E. (EXTC I AC QP Code: 3385 a2zsubjects.com [Total Marks: 80 | | N. | B.: (1) Question No. 1 is compulsory. (2) Attempt any three questions out of remaining five questions. (3) Assume suitable data if necessary. | | |----|---|--|----------| | 1. | An | (a) Classify and explain the various types of noises affecting communication. (b) Differentiate between narrowband and wideband FM. (c) In AM why IF is selected 455 KHz? (d) What is aliasing? How it can be prevented? (e) Why AGC is required in radio receivers? Explain diode detector circuit with simple AGC. | | | 2. | (a) | The antenna current of AM brodcast transmitter modulated to depth of modulation index 40% by an audio wae is 11A. It increase to 12A as a result of simultaneous modulation by another audio sine wave. What is modulation index due to this second wave? | 5 | | | 11.0 | Compare FM and PM. Explain with neat block diagram the phase shift method for supprassion of unwated sideband. | 5
10 | | 3. | (a)
(b) | | 10
10 | | 4. | | What are the drawbacks of delta modulation? Explain with neat block diagram working of Adaptive delta modulator. | 5 | | | 100000000000000000000000000000000000000 | Explain how PPM is generated from PWM? Explain VSB transmission. | 10 | | 5. | (a) | Explain the operation of Foster seely discriminator with the help of circuit diagram and phasor diagram. | 10 | | | (b) | Draw a neat block diagram of super heterodyne radio receiver and explain function of each block with waveforms. | 10 | | 5. | Wei | te short notes on (any four) :- (a) Independent sideband system (b) FM noise triangle (c) µ-law and A-law companding (d) Double spotting (e) TDM and FDM | 20 | (3 Hours)