3:00 PM SE (SEM-III) (REV-2012) (CBSGS) [MECHANICAL ENGG] COMMON WITH AUTOMOBILE ENGG SEM-III (LBSGS) QP Cod **QP Code: 5103** THERMODYNAMICS
(3 Hours) [Total Marks: 80]

N. B. :

- (1) Question No. 1 is compulsory
- (2) Solve any three questions from remaining five questions
- (3) Assumé suitable data
- (4) Use of Mollier Chart and Steam Table is permitted
- Q1) Answer any Five of the following:

[20]

- a) State the first law of thermodynamics for the Closed system undergoing a cycle.
- b) Explain Zeroth Law of Thermodynamics.
- c) Show that entropy is property of system.
- d) Define Availability and Unavailability.
- e) Define COP for refrigerator and heat pump. Derive relation between theat.
- f) Define (i) Dryness Fraction
- (ii) Sensible heat of water
- (iii) Latent heat of vapourisation
- (iv) Superheated Steam
- Q2) a) State the Kelvin Planck and Clausius statement and establish the equivalence of both for Second law of Thermodynamics.

[08]

- b) One kg of dry saturated steam undergoes an isentropic expansion process from 10 bar to I bar Determine the final condition of steam and the work done when the expansion takes place.
 - (i) In a cylinder fitted with a piston
 - (ii) In a turbine

[12]

- Q3) a) State and derive Steady flow energy equation and apply it to a boiler, condenser, nozzle and turbine.
 - [08]
 - b) Liquid Octane C_8H_{18} at 25° S is used as fuel. Air used is 150% of theoretical air and is supplied at 25"C. Assume a complete combustion and the product leaves the combustion chamber at 1600K. Calculate heat transfer per kg mole of fuel. Use the following data [12]

Substance	b (MJ/Kmole)	h_{298K} (MJ/Kmole)	h _{1600K} (MJ/Kmole)
C_8H_{18}	-250	-	-
O ₂		8.68	52.96
N 2	-	8.67	50.57
H_2O (gas)	-241.8	9.9	62.75
60,	-393.5	9.36	76.95

QP Code: 5103

muADDA.com

Q4)	a) Derive an expression for efficiency of Dies	el cycle.		[08]	
	b) A mass of air initially at 206°C is at a partial air is expanded at constant pressure to 0.09 carried out, followed by a constant temperary processes are reversible. Sketch the cycle or received and heat rejected in the cycle.	Om ³ , a polytropic process with n = ture process which completes the cycl	1.5 is then le. All the	e	
	Take R = 0.287 KJ/KgK , $C_r = 0.713 \text{ KJ/}$	KgK		[12]	
Q5)	a) Explain Maxwell relations.			[04]	
	b) Explain Clausius - Clapyeron Equation .			[04]	
	c) An engine working on the Otto Cycle is sup The compression ratio is 8. Heat supplied is and temperature of the cycle, the cycle effic	2100 KJ/Kg. Calculate the maximum	pressure	[12]	
Q6)	a) Explain	•			
	(i) Combustion	(ii) Enthalpy of Formation			
	(iii) Enthalpy of Combustion	(iv) Adiabatic flame temperature		[80]	
	b) A reversible engine receives heat from two thermal reservoir maintained at constant temperatures of 750K and 500K. The engine develops 100KW and rejects 3600KJ/min of heat to a heat sink at 250K. Determine the heat supplied by each thermal reservoir and thermal				
	efficiency of the engine.			[12]	

2