SECOND YEAR - SEM - 14
ORGANIC CHEMISTRY - 2015-2016

Sem IV. First Half 2016

Q.P. Code: 527500

(3 Hours)

[Total Marks: 70

- **N.B.**: (1) All questions are compulsory.
 - (2) Attempt all subquestions together.
- (a) Discuss the difference in acidity of benzoic acid and phenol and account 2 for the same.
 - (b) Among ethylamine and ethanol, the former is considered basic while the latter is called neutral, even though both Nitrogen and Oxygen atoms have lone pair of electrons. Explain.
 - (c) Aldehydes are considered to be more reactive than ketones, account for the same.
 - (d) Account for the fact that oxidation of ketones with strong oxidising agents
 is not an important method to synthesize carboxylic acids.
 - (e) Using a mild oxidising agent convert an aldehyde to a carboxylic acid and write the reaction involved.
 - (f) Answer the following (any three) and write the complete reaction:
 - (i) Butanone KOCl, Δ H₃O⁺.
 - (ii) Formaladehyde + sec.buty! Magnesium bromide ether H₃O⁺.
 - (iii) diethylester of hexanedioic acid C₂H₅O⁻, C₂H₅OH.
 - (iv) Bromobenzene Mg, THF CO₂ H₃O'.
- 2. (a) Discuss the mechanism of the following:
 - (i) Benzoin condensation.
 - (ii) Benzaldehyde + ethyl 2-bromopropionate Zn, ether H₃O*
 - (b) Write the steps involved in the following conversions:
 - (i) diethyl malonate to 2,2-dimethylethanoic acid.
 - (ii) Salicylaldehyde to catechol.
 - (c) Discuss two different methods of synthesis of ethers and write the reactions involved.

TURN OVER

Q.P. Code : 527500

2

- 3. (a) Give the mechanism for the following using suitable examples.
 - (i) Alkaline hydrolysis of an ester and account for the retention of configuration of alcohol formed.
 - (ii) Beckmann rearrangement and show the stereochemistry involved.
 - (b) Answer the following and write reactions involved.
 - (i) Using Gabriel synthesis prepare n-propylamine.
 - (ii) Using Cannizarro reaction prepare a mixture of formic acid and benzyl alcohol in good yields.
 - (c) Bring about following conversions and write the reactions involved.
 - (i) Aniline to Chlorobenzene.
 - (ii) Ethyl benzoate to n-propyl benzoate.
 - (iii) Benzoic acid to benzamide.
- 4. (a) Complete the reactions and write the mechanism involved:
 - (i) 1,1 Diphenyl 2-methyl propan 1,2 diol H*.
 - (ii) p-nitrobenzamide NaOBr.
 - (b) Discuss the conformational stability of 1-methyl 4-phenyl cyclohexane and 1-methyl 2-phenyl cyclohexane separately and comment on resolvability.
 - (c) Write the reaction and the product formed in any three of the following
 - (i) Propiophenone + $Ph_3P = CHCH_3 \rightarrow .$
 - (ii) Acetone + diethyl succinate t-BuOK.
 - (iii) Phenyl propionate AlCl,, high temp.
 - (iv) 2, 4 dinitro chlorobenzene aq. NaOH, Δ.
- 5. (a) Give the mechanism involved in the following:
 - (i) Reimer Tiemann reaction.
 - (ii) Reaction involved when benzyltrimethylammonium bromide is treated with sodamide.

TURN OVER

6.

Q.P. Code: 527500

3

(b)	Write the reactions involved in the following conversions.				4
	(i)	o-toluidine	to	o-cresol.	
	(ii)	ethyl pentanoate	to	pentanol.	
	(iii)	cyclohexanol	to	1-methyl cyclohexanol.	
	(iv)	benzaldehyde	to	cinnamic acid.	
(c)	Discuss Haworth synthesis of naphthalene. Also write the resonance				3
	stru	ctures of naphthale	ne.		
(a)	Write the mechanism in the following conversions:				4
	(i)	Acetophenone to	ethy	ylbenzene using selective reducing agent.	
	(ii)	Phenol to	sali	cylic acid.	
(b)	Writ	te the product at the	end o	f the reaction and name the reaction involved.	4
	(i)	C ₆ H, CNHOH acc	etic ar	nhydride OH H ₂ O	
	(ii)	p-toluidine HNO ₂	C ₆ H	OH, Na ₂ CO ₃ soln.	

- (c) Write a note on two or three reducing agents and choose proper examples to explain their use.