Duration 03 Hours

Total Marks assigned to the paper 80

Marks assigned to each question should be stated against each question.

Instructions to the candidates, if any:-

N.B.:

- 1) Attempt any Four questions from the Six questions
- 2) Assumptions made should be clearly stated.
- 3) Figures to the right indicate full marks.
- 4) Illustrate answer with sketches wherever required.
- 5) Use of Normal table is permitted.
- 1 (a) If $X_1, X_2, ..., X_n$ are the Poisson variates with parameter $\lambda = 2$, use the central limit 10 theorem to estimate $P(120 \le S_n \le 160)$ where $S_n = X_1 + X_2 + ... + X_n$ and n = 75.
 - (b) Define random process and give a detailed classification of random process with 10 examples of discrete and continuous random process.
- 2 (a) Let $X = N(\mu; \sigma^2)$. Find μ_X and σ_X^2

10

10

(b) Consider the random process X(t) defined by

 $X(t) = Y \cos(\omega t)$: 20

where ω is a constant and Y is a uniform r.v. over (0, 1).

- i. Find E(X(t))
- ii. Find the autocorrelation function of X(t).
- iii. Find the autocovariance function of X(t).
- 3 (a) Let $X(t) = a \cos(2\pi f_0 t + \Theta)$ where Θ is uniformly distributed in the interval $(0, 2\pi)$. Find 10 $S_{X}(f)$.
 - (b) Write a detailed note on Kalman filter.

10

The time elapsed between the claims processed is modeled such that T_k represents the 10 (a) time elapsed between processing the $(k-1)^{th}$ and k^{th} claim where T_1 is the time until the first claim is processed, etc.

You are given

- I. $T_1, 2, \dots$ are mutually independent; and
- The pdf of each T_k is $f(t) = 0.1 e^{-0.1t}$, for t > 0П. where t is measured in half-hours.
- Calculate the probability that at least one claim will be processed in the next 5 hrs?
- What is the probability that at least 3 claims processed within 5 hrs?
- (b) Find the optimum causal filter for estimating a signal Z(t) from the observation X(t) = Z(t) + N(t)

10

a2zSubjects.com

where Z(t) and N(t) are independent random processes, N(t) is a zero-mean white noise with noise density 1 and Z(t) has power spectral density

 $S_2(f) = 2/(1 + 4\pi^2 f^2).$

Find the Wiener optimum filter.

- 5 (a) Describe each of the following random walks with corresponding transition m. rix: 10 General 1-D random walk, random walk with absorbing barriers, random walk with reflecting barriers, and cyclic random walk.
 - (b) State and explain Bayes' theorem. 05
 - (c) Give the classification of Markov states.
- 6 (a) Expiain the concept of a typical queueing system with a suitable block diagram. 05
 - (b) State and explain Little's formula. 05
 - (c) Explain in detail M/M/I queueing system.

